Pharmacokinetics and Dose Proportionality of Sublingual Sufentanil NanoTab in Healthy Volunteers

Pamela P. Palmer, M.D., Ph.D., Larry G. Hamel, Roman J. Skowronski, M.D., Ph.D.
AcelRx Pharmaceuticals, Inc., Redwood City, California

Introduction: Currently, the only approved products for cancer breakthrough pain are fentanyl-based oral transmucosal dosage forms. Actiq®, the leading transmucosal fentanyl product, displays a highly variable T_{max}, with values ranging from 20 – 480 minutes. This variability can be attributed in part to the large fraction of swallowed fentanyl (approximately 75%). A novel Sublingual Sufentanil NanoTab™ product is being developed as a new treatment option for patients with breakthrough cancer pain. Sufentanil is characterized by a high selectivity and affinity for mu opioid receptors, and clinical analgesic studies demonstrate sufentanil is approximately 5-10 times more potent than fentanyl. While sufentanil is a potent analgesic, it possesses a high therapeutic index as determined in animal studies (80-fold safety margin as compared with fentanyl). Furthermore, when compared with fentanyl, the pharmacokinetic profile of sufentanil in man shows a smaller volume of distribution and a shorter terminal half-life. The NanoTab is a very small sublingual tablet designed to maximize oral transmucosal drug uptake and to limit the fraction of swallowed drug, which should result in higher bioavailability and consistent pharmacokinetic parameters.

Methods: A total of 24 healthy volunteers (12 males, 12 females, 18 – 45 years old) received a single dose of varying dosage strengths of Sublingual Sufentanil NanoTabs, ranging from 2.5 mcg to 80 mcg in an open-label, crossover design. Cohort 1 (n=12) received lower dosage strengths (2.5, 5, 10 mcg) and Cohort 2 (n=12, received higher strengths (10 and 80 mcg). Subjects were blocked with oral naltrexone 50 mg twice per day and sufentanil 5 mcg intravenous infusion over 10 minutes was used as a comparator arm. Plasma sufentanil concentrations were determined for 640 minutes following NanoTab dosing.

Results: Dose proportionality, as assessed using C_{max} and AUC, was evident within each cohort and bioavailability averaged 79.4% overall, indicating a minimal fraction of drug being swallowed. C_{max} values had relatively low variability, ranging from 6.8 ± 2.1 pg/ml (coefficient of variation, CV = 31%) for the 2.5 mcg dose up to 127.2 ± 42.3 pg/ml (CV = 33%) for the 80 mcg dose. T_{max} values were highly consistent, averaging 43.8 ± 7.8 minutes (CV = 18%) for the 2.5 mcg dose with a range of 30 - 60 minutes, and averaging 53.4 ± 21 minutes (CV = 39%) for the 80 mcg dose with a range of 30 – 90 minutes. Observed half-life times for the 2.5 mcg and 80 mcg doses averaged 1.7 ± 0.5 hours and 4.2 ± 0.9 hours, respectively. No sublingual irritation due to NanoTab dosing was observed.

Conclusions: Sublingual Sufentanil NanoTabs have desirable pharmacokinetic parameters (relatively high absolute bioavailability, C_{max} and T_{max} with low variability, and a relatively short half-life) for the management of acute, episodic (breakthrough) pain. A multicenter, Phase II clinical trial in cancer breakthrough pain is currently on-going to further investigate potential clinical benefits of Sublingual Sufentanil NanoTabs.

From Proceedings of the 2009 Annual Meeting of the American Society Anesthesiologists.